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AbslncL A sptematic theoretical study of Blcch electron transport in a superlattice 
miniband driven by a uniform external electric field parallel to the growth axis is carried 
out, based upon a recent extension of the balanceequation approach to arbitrary energy 
bands, with a dynamic force-balance equation far the centre of m m  (a), a variable-mass 
particle embodying the collective motion of the electrons, and a dynamic energy-balance 
equation. Analyses of both steady-state transport and the transient response to a step 
and an impulsive electric field are made for various superlattice systems, assuming tight- 
binding miniband structure and using parameters appropriate for rvalley electrons in 
GaAs-based quantum-well superlattices at  various lattice temperatures. In the steady- 
state case the driR velocity, vd. electmn temperature T.. average inverse effective mass 
of the CM, and other quantities, are presented as functions of the electric field. In the 
transient response case they are presented as functions of time, following turn-on of the 
step or impulse electric field. 

1. Introduction 

Early interest in superlattices was motivated by the possibility of negative differential 
mobility for perpendicular carrier transport. About twenty years ago, Esaki 
and Tsu [l] proposed that a manmade one-dimensional potential structure, or a 
superlattice in which carriers move in a periodic potential on a scale of many 
lattice constants, would facilitate the observation of quantum mechanical properties 
of Bloch states in a new domain of physical scale. The narrow wavevector 
minizones and the narrow energy bands make it possible for electrons to be 
accelerated beyond the inflection point with moderate electric fields, leading to 
a negative differential conductance. However, subsequent observations of the 
negative differential conductance in carrier transport perpendicular to  the superlattice 
layers have been attributed to the formation of highly localized high-field domains 
[ 2 4  rather than Bloch transport. It was not until the past few years that 
perpendicular carrier motion was clearly demonstrated to occur through a Bloch- 
type miniband state [SI. With steady improvements in the quality of semiconductor 
microstructures, research on superlattice vertical transport has intensified with 
renewed activity. Recent systematic measurements [a] were able to show that 
perpendicular negative differential mobility was observed as a bulk effect, and that 
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Bloch electron conduction through the superlattice miniband is responsible for this 
negative differential conductance over a large range of superlattice parameters. 

Following the original pioneering analysis of Esaki and Bu [1,9], there 
were several Monte-Carlo calculations [1&12] on superlattice miniband transport. 
However, a detailed theoretical investigation, even a numerical one, to facilitate 
quantitative comparison with experiments, is still lacking. There remains an urgent 
need to establish a more sophisticated theory, preferably an analytical one, to provide 
ready access to theoretical explication of experimental data on perpendicular Bloch 
transport of carriers in a superlattice. 

Recently effective-force and energy-balance equations have been derived for hot- 
electron Bloch transport in an arbitrary finite-width energy hand [13]. These equations 
are extensions of the balance equations developed earlier by Lei and Ting [14] for 
parabolic band structures generalized to the case of carriers moving in a single realistic 
energy band subject to an arbitrary uniform electric field. The balance equations 
provide a succinct two-parameter description of hot-electron Bloch transport. We have 
briefly reported the application of these equations to discuss the negative differential 
velocity in the steady-state miniband conduction of a superlattice [15]. In this paper 
we will give a more detailed analysis of the perpendicular Bloch transport of carriers 
in a superlattice miniband for both the steady state and transient cases. 

X L Lei et a1 

2. Eflective-force and energy-balance equations 

The balance equation theory of electron transport in an arbitrary energy band under 
the influence of a strong electric field devolves upon two parameters, the momentum 
of the centre of mass (CM) P = Np, (N is the total number of carriers) and the 
electron temperature I",. The rate of change of the average drift velocity U,, and 
the rate of change of the internal energy he (per carrier) of the system, satisfy the 
following equations [13]: 

- dud = e E . I C + A i + A p  
d t  

Here IC is the average inverse effective mass tensor, defined as 

and the drift velocity z), is given by 

in which ~ ( k )  is the zero-field single-band energy of the electron state of wavevector 
le,  and u ( k )  E V E ( ~ )  is the  velocity function. Here we utilize a periodic zone 
description for the electrons, such that k and k + G (G is a reciprocal lattice vector) 
represent the same state: E ( k + G )  = ~ ( k ) ,  and u ( k + G )  = u(k), and the sum over 
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k goes over NL = l/Sl (S2 is the volume of the unit cell) points within a volume Of 
a Brillouin zone. In (3) and (4) 

i (k)  = & ( k - p d )  (5) 

f ( ~ ( k ) , T , )  = {exp[(g(k) - P ) / T J  + I]-' (6) 

N = 2 C f ( E ( k ) , T e )  = 2 C f ( E ( k ) , T ) .  (7) 

and 

is the Fermi distribution function at electron temperature T, and j~ is the chemical 
potential, which should be determined in accordance with 

b k 

In (1) Ai and Ap are the frictional accelerations of the centre of mass due to impurity 
and phonon scatterings, respectively, and in (2) MI is the energy loss rate per carrier 
from the electron system to the phonon system: 

Ai= - ~ C ~ ( q ) 1 2 1 ~ ( h , ~ ) I Z [ ~ ( k + q ) - v ( b ) 1 6 ( ~ ( k + q )  - & ( l e ) )  
2nn, 

N 
4 q  

(8) 
f(C(k), T.) - f(+ + q) ,  T,) 

I49 , i (k )  - 3 k  + d)I2 
X 

(10) 

In these equations n, is the impurity density, fl A is the frequency of the phonon 
of wavevector q in branch A, u(q)  and M(qA7 are the Fourier representations 
of the impurity potential and the electron-phonon coupling matrix element, and 
n ( z )  = (e" - 1)-' is the Base function; E(q,w) is the dielectric function of the 
electrons in the random-phase approximation: 

where n:(q,w) and II!(q,w) are the real and imaginary parts of the densitydensity 
correlation function of the electron system in the absence of Coulomb interactions: 
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In (8)-(10) and (12), g ( k , g )  is a form factor related to the electron wavefunction 

X L Lei et a1 

$k(.): 

In the steady state ( 1 )  and (2) reduce to 

e E .  K + Ai + A, = 0 
e E . u d - W = O .  

Equation (14) indicates that in the steady state the resistive accelerations due to the 
impurity and phonon scatterings exactly cancel the electric-force acceleration of the 
centre of mass, which behaves as a particle of a charge Ne and an inverse effective 
mass K I N .  Equation (15) shows that in the steady state the energy supplied by the 
electric field is fully dissipated to the phonon system. 

Because of the appearance of the centre-of-mass momentum in i ( k ) ,  the 
quantities in (14) and (15). such as the averaged inverse effective mass tensor K, 
the drift velocity udr the frictional accelerations Ai and A,, and the energy loss rate 
W ,  are all functions of the CM momentum p ,  and the electron temperature T,. The 
balance equations (14) and (15) enable us to determine the steady-state values of pd 
and ‘Ie, and thus all the physical quantities, once the electric field is given. On the 
other hand, (1) and (2) describe the time-dependent process on a timescale that is 
much longer than the thermalization time of the system. In this case we can treat 
both pd and T, as timedependent parameters, and (1) and (2) become coupled time 
differential equations for pd and T,. One can solve these equations to obtain the 
transient response of the system to an  external electric field E ( t ) .  

3. Steady-state perpendicular transport of carriers in a superlattice miniband 

We assume that the conducting carriers of the superlattice are free to move in 
layers (+-y plane), but are subject to a periodic potential in the z direction. The 
single-electron state of the system can be described by a wavevector k = (kll, k z ) ,  
- n / d  < k ,  < rr /d  (where d is the period of the superlattice), together with a 
miniband index R ,  with the Bloch wavefunction written as $,,*(T) $nk(rll, z )  = 
S-’/2exp(ikll . ~ , ~ t ) C , ~ ~ ( z )  (here S is the area of the system in the z-y plane), and 
the eigenenergy is ~ , ( k )  = + ~ , , ( k , ) ,  (ekII = k i / 2 m ,  m being the effective mass 
of the carrier in the underlying lattice). The envelope function C n k ,  (2) is determined 
by the periodic potential of the superlattice. Since we are interested in the case in 
which the carriers are fairly tightly bound to a single quantum well, we can use the 
tight-binding sum for the envelope function 

where Ank, is a normalization coefficient and 4,,(z) is the single-well eigenfunction 
of energy E ,  for the well centred at z = 0, which is normalized as 14,,(z)1’dz = d. 
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Considering only nearest-neighbour overlap in the tight-binding approximation, we 
have the miniband energy dispersion 

(17) 
A 
2 

~ , ( h . )  = E ,  + (-l)"---lcosk,d 

with A, being the bandwidth of the nth miniband, and the normalization coefficients 
are not much different from unity: 

Ank- = 1 + 20,  cos k,d (18) 

where a, = d - ' J c n ( z ) & ( z  - d)dz ,  the wavefunction overlap integral, is a small 
coefficient. 

In further discussions we consider only the lowest minihand (n = 1). such that 
we can drop the miniband index from the above expressions, and write the electron 
energy as 

E ( k )  = + El(k,) (19) 

A 
2 

€ ' ( I C z )  = -(l-coslc,d) 

where we have chosen the band bottom (at IC,, = 0, kz = 0) as the energy origin and 
A 

The form factor g ( E , q )  can be calculated by substituting the tight-binding 
envelope function (16) into (13). Neglecting the small correction due to wavefunction 
overlap we have 

A1 denotes the miniband width. 

g(r2,q) 2 e'*s'14(z)12d~ g(q,) (21) ' J  ' 
independent of lz, where 4 ( z )  is the single-well wavefunction of the ground state. 

tensor IC is diagonal with K,, = IC,, = l /m,  KiZj  = 0, and 
For the energy dispersion as described by (19) the average inverse effective mass 

1 2 d2e h 
IC = - = -xdf(i(lz),Te). d kt  

m; N *I 

If the electric field is applied along the z direction E = (O,O, E), the average CM 
momentum, the drift velocity, and the frictional accelerations are all in the same 
direction: pd = (O,O, pd). vd = (O,O, u d ) ,  Ai = (O,O, Ai) ,  and A, = (O,O,  A,). The 
effective-force and energy-balance equations for the steady state then take the form 

e E / m ;  + Ai + A ,  = 0 

eEvd - W = 0 .  

Here 



Although this development can be applied in more general circumstances, we assume 
that the system considered here has a fixed carrier number density, independent 
of temperature. The chemical potential p ,  involved in the Fermi distribution 
f (E(k) ,T , ) ,  is a function of Te and A and is determined by (7). For the energy 
dispersion given by (19), this equation can be written as 

A C O S - ~ ( I - ~ ~ / A )  rm de 
E': = ; 

or 

(28) 
A 
2 @ - - ( l - c o s r )  

where 

is the zero-temperature Fermi energy of a pure two-dimensional system (A = 0) 
with carrier sheet density N,. The expressions for Ai, A, and W are obtained by 
considering the z component of (8) and (9) with u ( h )  replaced by u(k,) and g ( h ,  q )  

The expression (8) for the impurity-induced frictional acceleration Ai was obtained 
by assuming that the scattering centres are randomly distributed over the whole 
volume of the three-dimensional system. In a real superlattice system, however, one 
should take into account the modulation profile of the impurity density, such as 
background impurity, remote impurity, and interface roughness scatterings. Different 
expressions may be obtained and one may have a somewhat different temperature 
dependence of the frictional acceleration due to different types of elastic scatterings. 
Nevertheless, the effect of this difference is generally so small that we do not need 
to consider these details in the context of our present interest. 

The effect of the carrier-carrier interaction is included in the expressions for Ai, 
A, and W dynamically through the dielectric function e ( q ,  w )  in the random-phase 
approximation. Dynamical screening may play a decisive role in specific problems, 
and thus must be taken into full account for each individual case. Nevertheless, it is 
now known that for a moderate carrier density of up to - 10'l cm-*, the dynamical 
effects of screening are not significant in most commonly encountered cases [16]. 
Therefore, to simplify the numerical process, in the present work we replace e ( q ,  w )  
in @)-(lo) by its static counterpart. 

We have carried out numerical calculations for a model quantum-well superlattice 
system with well width a and period d. The form of the single-well function 4 ( r ) ,  
which affects only the form factor g ( q z ) .  is not critical to the perpendicular transport 
properties. For convenience we simply choose 4 ( z )  = constant inside the well and 
zero otherwise, such that 

by d q , )  (equation (21)). 
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The material parameters of thC system are chosen to correspond to the I?-valley 
electrons in n-type GaAs-based superlattices: electron effective mass m = 0.07m, 
(me is the free electron mass), material mass density pd = 5.31gcm-', static 
dielectric constant n = 12.9, optic dielectric constant K ,  = 10.8, longitudinal 
optic phonon frequency 0, = 5.37 x 1013s-1, acoustic deformation potential 0 = 
8.5eV, piezoelectric constant h,, = 1.41 x 10YVm-', longitudinal sound velocity 
vsl = 5.29 x lpcms- ' ,  and transverse sound velocity ult = 2.48 x l ecms- ' .  We 
incorporate contributions from polar optic phonon scatterings, longitudinal acoustic 
phonon scatterings (deformation potential and piezoelectric couplings) and charged 
impurity scatterings. AI1 these material parameters and the expressions for electron- 
phonon matrix elements are standard (171. 

80,  1 I 

.. 
c . E - - . 2 0.6 0.4 0.2 o.8pf 300 K IW E 

0 0 
0 IO 20 30 40 

E ( k V / m )  

Figure 1. (a) Steadystate drift velocity U, ( b )  dimensionless CM momentum pad and 
the average inverSe effective mass 1 fm:  normalized by ]/me, (c) electmn temperature 
T.-T and energy loss rate per camer W ,  and ( d )  average transverse energy normalized 
by electmn temperature (<I[) f ksT. and average longitudinal energy normalized by half- 
width o f  the miniband ( e* ) / (A/2 ) ,  are shown as functions of the applied electric field 
E at various lattice temperatures for a GaAs-based quantum-well superlattice system 
with d = IMIA, (L = SlA, N ,  = 4.0 x lO"cm-', miniband width A / k e  = 400K 
and weak field mobility = 2.0m2V-ts- t  a t  4.2K. I: T = 77K. 2 T = 170K, 3 
T = 3WK. 

In figure l(a) we show the steady-state drift velocity vd calculated using the 
balance equations (23) and (24), as a function of the electric field at  lattice 
temperatures T = 77K, 170K and 300K, for erpendicular electron transport 
in a GaAs superlattice of d = lWA, a = 57 t; , electron sheet density N, = 
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4 . 0 ~  10" cm-', miniband width A = 4aOK and the impurity scattering rate is chosen 
to correspond to a low-temperature electron weak-field mobility po = 2.0m2V-'s-1. 
For this N,, the zero-temperature Fermi energy is E~ z 158.7K. The negative 
differential mobility behaviour is more pronounced at lower temperatures than a t  
higher temperatures. IIb gain an appreciation of the parameters employed in 
the balance equation theory in figures l(b) and ( c )  we plot the corresponding 
dimensionless CM momentum pdd and the electron temperature T, as functions of 
the electric field E. In these figures the ensemble-averaged effective mass m; (in 
units of mB Adz/2) and energy transfer rate W (per carrier) are also shown as 
functions of E. We can see that Te - T increases with increasing E almost linearly, 
except for the low-field region ( E  < 1 kVcm-I). The CM momentum pad, however, 
is highly non-linear. Values of pdd in the range (0, r/2)  are sufficient to describe 
the steady state, and thus it will saturate towards r / 2  at high fields, which implies a 
positive but perhaps very large average effective mass. 

The significant increase of the electron temperature with increasing electric field 
implies that the average electron longitudinal energy 

X L Lei el a1 

will saturate towards A / 2  at high electric fields. On the other hand, the average 
transverse energy 

continues to increase with increasing electric field. At high fields, ( E ~ ~ )  r kBT.  This 
stands in contrast to the Monte-Carlo calculations [1@12], but is a consequence of the 
high electron temperature and the assumption that is parabolic. The calculated 
results for 2(&,)/A and (cIl)/kBTe are shown in figure l(d). 

4. Time dependence of the transient process 

The balance equations (1) and (2) can be used to analyse the time development of 
the transient process if the timescale concerned is longer than the thermalization time 
of the system. In quantum wells, for example, the thermalization time appears to be 
very short [NI. Thus, in most cases we can expect these equations to describe the 
timedependent process on a scale of the order of magnitude of 0 . 1 ~ ~ .  

For the perpendicular transport configuration of carriers in a superlattice miniband 
as described in the preceding section, with a time-dependent uniform electric field 
E ( t )  applied along the z direction, the balance equations (1) and (2) can be ~ t t e n  
as 
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Here, the frictional accelerations Ai and A, due to impurity and phonon scatterings, 
the energy loss rate to phonons W, as well as the average drift velocity vd and the 
average electron energy he, are all functions of the centre-of-mass momentum pd and 
the electron temperature T,. In the transient process pd and T' are time dependent, 
and (33) and (34) describe the time evolution of these variables under the inflUence 
of the time-dependent field E(1).  

The drift velocity U,,  as a function of pd and Te, has been given by (25). 
Differentiating it with respect to time, we obtain 

(35) 
dv 
-A = Bdpd + BTTe 
d t  

with 

2d A .  1 
Bd= ~ C v ( l c , ) [ - f ' ( C ( ~ ) , T , ) ] - s s l n ( l c , - p , ) d  = - m: (36) 

k 2 Te 

The kinetic part of the average electron energy, (e), is just the sum of ( E , , )  and 
( e z )  given by (31) and (32) 

C E ( k ) f ( C ( k ) , T )  
2 

(€) = - 
N k  

which depends on both pd and T,, leading to 

= c,p, + CTTe (39) d t  

with 

The contribution of the intercarrier Coulomb interaction to the average electron 
energy is independent of pd and thus it induces only an ordinary specific heat 
modification to the coelficient C,. For simplicity we omit this modification in the 
following numerical calculations. 

The differential equations which will be employed to analyse the time evolution 
of pd and T, are 

Starting from initial values of pd and T' we obtain the transient response of p, and 
T,, and thus all the physical quantities U , ,  m:, . . ., to a given applied field E(t), by 
solving this set of differential equations. 
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We have carried out many numerical calculations of miniband transient transpon 
for various GaAs-based quantum-well superlattices. Electrons, phonons, material 
parameters and electron-phonon coupling constants are the same as those used in 
the steady-state calculation of the preceding section. 

In figure 2 we plot the transient response of the drift velocity ud to step electric 
fields of various strengths (E = 0.3, 0.7, 2.0, 5.0 and lO.OkVcm-') at a lattice 
temperature T = 77K for a quantum-well superlattice with d = 57% a = 37% 
N ,  = 2.0 x 101Ucm-2, A = 400K and low-temperature impurity-limited weak-field 
mobility = 20mZV-'s-' . For this carrier-sheet density the zero-temperature 
Fermi energy is only = 7.9K, much lower than that of the system described 
in figure 1. In the case of E = 0.3kVcm-' and E = 0.7kVcm-l, the response 
is qualitatively similar to that of parallel transport in GaAs heterosystems [19]: 
zld rises monotonically with a time constant of 1.5-3ps, without overshoot. When 
the field increases into the negative differential mobility regime of the steady-state 
curve (figure 2 inset), the drift velocity overshoot appears. With a continuing 
increase of field strength, the drift velocity overshoot becomes more pronounced 
and the instantaneous peak velocity is reached at an earlier time. In the case of 
E = 10kVcm-' the transient peak drift velocity is about 2.5 times that of the 
steady-state value, and this peak velocity is reached at about 1 = 0 . 1 8 ~ s  after turn-on 
of the electric field. 

0 0.5 I 1.5 

1 (PS) 

Figure 2. Calculated transient response of the drift velocity vd lo  step electric held 
turned on at time t = 0 with various lield strengths. I: 10kVcm-'. 2 5.0kVcm-', 
3: 2.0kVcm-l,  4 0,7kVcm-', 5: 0.3kVcm-'. The inset shows the mrresponding 
locations of these fields on the steady-state velocity-field curve. n e  lattice temperature 
is T = 77K. The system is an n-type Gahr-based quantum-well superlattice with period 
d = 57 A. electron shcct density N ,  = 2.0 x IO'O cm-*, miniband width A f ks = 400 K 
and low-temperature impurity-limited mobility PLO = 20m2V-'s-'. 

In regard to the temporal development of the electron temperature Te, the centre- 
of-mass momentum p ,  and the average inverse effective mass l/m:, we exhibit 
results in figure 3 for Te, pd and l/m:, as well as vd, as functions of time for 
the same system as that described in figure 2 with the step electric field strengths 
E = 1OkVcm-', and E = 5kVcm-l, respectively. It should be noted that the 
momentum p,, the ensemble averaged inverse effective mass l /m; ,  and the drift 
velocity lid. all refer to the collective response of the system for all carriers in the 
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A 300 
I 

200 ?s 
50 G 

s 100 
T = T ? K  loom 0 0 0.5 I 1.5 0 

F i g u ~ t  3. Time development of the dhlt velocity U,, electmn temperature T., 
normalized CM momenlum p d d ,  and normalized average inverse effective mass me/m: 
(ms A d 2 / 2  is the perpendicular band eleclmn mass at the miniband bottom). The 
systemislhesameasthatdescribed in figure 1,withastepfieldstrength E = IOkVem-' 
a1 a latlice temperature of T = 77 K. 

energy band. In the steady state, the drift velocity U, must be in the same direction 
as the applied field (for the case discussed in this paper) so that the energy flows 
into the electron system from the field. Therefore, the steady-state value of p, never 
exceeds x/2d,  and the average inverse effective mass is always positive, (as shown in 
figure l), notwithstanding that individual electrons driven beyond the inflection point 
may sense a negative inverse effective band mass. In the case of transient response, 
however, the electric field can drive pd beyond x /2d  and l/m: can become negative 
in a limited time interval, as shown in figure 3 for the time range 0.19 < t < 0.44ps, 
and in figure 4 for the time range 0.34 < t < 0.72~s .  The instantaneous peak 
drift velocity is reached at t = 0 . 1 8 ~ s  in figure 3, and at t = 0 . 3 7 ~ s  in figure 4. 
This reflects the fact that the electric field acceleration is responsible for the rapid 
increase of the drift velocity following start-up, and contributes to its decrease within 
the time intervals indicated above, manifesting a genuine Bloch-type behaviour for 
a non-parabolic band. This phenomenon is more pronounced at lower temperatures 
and at lower impurity scattering rates than at higher ones. In figure 5 we exhibit 
the response of U,,, Te, p, and l/m: to a step field of strength E = 2OkVcm-I 
at T = 300K for a GaAs-based quantum-well superlattice system of d = 57% 
a = 37% N, = 2 x 10'Ucm-2, A = 400K and low-temperature impurity-limited 
mobility pu = 2.0m2 V-Is-'. 

In order to achieve a broader perspective on transient response phenomena, we 
consider the case of an impulsive external electric field, which is turned on at t = 0 
and is maintained at a constant value until being turned off after a short time interval 
At .  Following shut-down of the field, the carriers relax from the current-carrying 
state at time 1 = At in the absence of the driving force. Since the current-carrying 
state, which embodies the initial conditions for the relaxation process, is sensitive 
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E 

I .5 

9, 

ma/m: 
0.5 

-0.5 

200 ...... 
" 
E: 

100 F: c. 20 
50 

7 = 77 I<. T = 300 I< 

0 0.5 I I .5 0 0.5 I I .5 
I [PI) 1 IP.) 

F&e 4 Same as figure 3, but with step Figure S. Same as figure 3, but with step 
field strength E = S.OkVcm-' and at lattice field strength E = 20kVcm-I and a t  lattice 
temperature T = 7 1  K. temperature T = 300K. 

5 

Figure 6. Transient response of the dr i f t  velocity vd 
to a 0.18 p impulse electric field (chain curve) and 
to a 0.4,~~ impulse electric field (broken curve), 
in mmparison with ud response to a step field of 
the Same strength, E = 10kVm-l ,  The system is 
the same as that described in figure 1. ?he lattice 
temperature is T = I7 K. 

Figure 7. Transient response of the drift velocity 
ud 10 a 0.2 ps impulse electric field (broken curve) 
and to a step field of the Same strenglh, E = 
2 0 k V ~ m - ~ .  The system is the Same as that 
described in figure 4. The lattice temperature is 
T = 3WK. 

to the field-duration interval At,  the ensuing relaxation behaviour is also sensitively 
dependent upon the impulse interval. In figure 6 we show the response of the 
same superlattice system as that described in figure 2 to an 0 . 1 8 ~ s  impulse electric 
field, to a 0.4ps electric field, and to a step electric field, all of the same strength 
of E = 10kVcm-I. A t  t = 0.18ps after the electric field is turned on the drift 
velocity achieves its peak value while the system has not yet been heated significantly 
(T. = 78.9K), and thus it suffers relatively light scattering due to phonons. This 



Balance-equation analysis of BIoch transport 9387 

results in a relatively long time for it to relax to the final state upon field turn-off a t  
0 .18~s .  Despite the fact that the system will ultimately approach a zero drift-velocity 
state, it surprisingly maintains a much higher drift velocity in the relaxation process 
than that for a continuously applied field over a considerable time range. This unusual 
phenomenology is a consequence of the fact that the field drives the centre of mass to 
a lower velocity in the time interval 0.1W.42 ps. due to a negative inverse effective 
mass, a feature unique to non-parabolic band transport. In delaying the shut-off of 
the electric field to 1 = 0.42 ps, however, the system becomes hotter (T, = 231 K) and 
thus suffers stronger phonon scattering, leading to a shorter relaxation time to the final 
state. With stronger impurity scattering (pu = 2.0m2V-'s-' ) a nd at higher lattice 
temperature T = 300K (stronger phonon scattering) the average inverse effective 
mass remains positive in the temporal development of the relaxation process even 
with a field of 20kVcm-', leading to substantially diminished drift velocities in pulse 
relaxation, below continuous field values. Figure 7 illustrates this shorter relaxation 
time. 

5. Conclusions 

In this paper we have carried out a systematic analysis of hot-carrier Bloch transport 
in a superlattice miniband based upon the balance-equation approach of Lei and 
Ting, extended to an arbitrary energy band structure. In its focus on the centre-of- 
mass motion, the balance equation approach addresses the collective response of the  
carrier system, rather than tracing out individual electron motions. The key quantity 
in describing non-parabolic systems is the ensemble-averaged inverse effective mass 
l/m:, that governs the dynamics of the centre of t h e  mass as a single particle 
with charge Ne and variable mass Nni; through a Newtonian equation of motion 
which includes the driving force (field) acceleration and the frictional accelerations 
due to impurity and phonon scatterings. This dynamical force-balance equation, 
together with the dynamical energy-balance equation, provides the basis for a succinct 
determination of steady-state and transient transport in a superlattice miniband. 

In the case of steady-state transport the velocity-field curve exhibits negative 
differential mobility for all the miniband widths, carrier sheet densities and lattice 
temperatures examined. This effect is more pronounced a t  lower lattice temperatures 
and for wider minibands, as long as the tight-binding description remains adequate. 
The peak drift velocity up and the threshold field E, depend strongly on the miniband 
width A,  the lattice temperature T and the impurity scattering rate. 

For a step electric field having a strength within the range of negative differential 
steady-state mobility the transient current exhibits a very pronounced overshoot. In 
GaAs systems the instantaneous peak drift velocity can be three times that of the 
steady-state value, and is generally reached within 0.12-0.3ps after turning on an 
electric field of 10kVcm-'. It is of special interest to note that the ensemble- 
averaged inverse effective mass can be driven by the field into the range of negative 
values. In consequence of this, if the electric field is shut  down just before the inverse 
effective mass becomes negative, the drift velocity will maintain a higher value than it 
would have without shut-down of the ficld, before it ultimately relaxes to zero. These 
striking results realistically exemplify genuine Bloch-type transport. 

Further theoretical and experimental explorations of steady-state and time- 
dependent miniband-electron transport should provide intriguing insight into physical 
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processes of key interest, such as Bloch oscillations, for semiconductor superlattict: 
systems. 
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